LESSON PLAN ## 1ST SEMESTER SESSION (2025-26) | | SESSION (2025-26) | |-----------------------|---| | NAME OF THE LECTURER: | Pooja Kumari | | CLASS AND SECTION: | B.Sc. 1 ST Sem. | | SUBJECT: | MECHANICS | | | | | | ASSIGNMENTS | | Week 1 | Orientation Fundamentals of Dynamics: Rigid body, moment of inertia Radius of Gyration Theorems of perpendicular and parallel axis Moment of inertia of rod | | Week 2 | Moment of inertia of ring, disc, angular disc, solid cylinder, solid sphere, hollow sphere | | Week 3 | Moment of inertia of rectangular plate, square plate, solid cone Torque, rotational K.E, angular momentum, law of conservation of angular momentum | | Week 4 | Rolling motion, condition of pure rolling, acceleration of body rolling down an inclined plane Fly wheel, moment of inertia of an irregular body Elasticity: deforming force | | Week 5 | Elastic limit stress and strain stress and strain & their types Hooks law Module of elasticity, Relation between shear angle and angle of twist, elastic energy stored in an elastic body | | Week 6 | Elongation produced in heavy rod due to its own weight, tension in rotating rod Poison's ratio & its limiting values, elastic constants and their relations Torque required for twisting cylinder | | Week 7 | Bending of beam, bending moment and its magnitude Flexural rigidity, geometrical moment of inertia for beam of rectangular cross section Bending of cantilever | | Week 8 | Weight of cantilever uniformly distributed over its length Dispersion of a centrally loaded beam supported at its ends. Determination of elastic constants for material of wire by Searle's method | |---------|--| | Week 9 | Special theory of relativity: Michelson's Morley experiments and its outcomes Postulates of special theory of relativity | | Week 10 | Lorentz transformations Lorentz contraction Time dilation Relativistic transformation of velocity | | Week 11 | Relativistic addition of velocity Variation of mass energy equivalence Relativistic doppler effect, kinematics | | Week 12 | Transformation of energy and momentum Transformation of force, problems of relativistic dynamics Gravitation and central force motion Law of gravitation | | Week 13 | Potential and field due to spherical shell Potential and field due to solid sphere Motion of a particle under central force field Two body problem and its reduction to one body problem and its solution | | Week 14 | Compound pendulum or physical pendulum in form of elliptical lamina and expression of time period Determination of g by bar pendulum Normal coordinates & normal modes Normal modes of vibration for given spring mass system | | Week 15 | Angular frequencies of oscillation of two identical simple pendulum joined together | | Week 16 | Discussion & revisionUnit test | ## **LESSON PLAN** ## 1ST SEMESTER SESSION (2025-26) | NAME OF THE LECTURER: | Pooja Kumari | |-----------------------|--| | CLASS AND SECTION: | B.Sc. Medical 1 ST (Minor) | | SUBJECT: | ELEMENTARY MECHANICS | | | ASSIGNMENTS | | Week 1 | Orientation Fundamentals of Dynamics: Rigid body, moment of inertia Radius of Gyration | | Week 2 | Theorems of perpendicular and parallel axis Moment of inertia of ring, disc | | Week 3 | Moment of inertia of angular disc Moment of inertia of solid cylinder Unit test 1 | | Week 4 | Elasticity: deforming force Elastic limit stress and strain | | Week 5 | stress and strain & their types Hooks law Module of elasticity | | Week 6 | Relation between shear angle and angle of twist Poison's ratio & its limiting values | | Week 7 | Torque required for twisting cylinder Unit test 2 | | Week 8 | Special theory of relativity: Michelson's Morley experiments and its outcomes | | Week 9 | Postulates of special theory of relativity Lorentz transformations | |---------|--| | Week 10 | Lorentz contraction Time dilation Relativistic transformation of velocity | | Week 11 | Relativistic addition of velocity Variation of mass energy equivalence Discussion | | Week 12 | Gravitation and central force motion Law of gravitation Potential and field due to spherical shell | | Week 13 | Potential and field due to solid sphere Motion of a particle under central force field | | Week 14 | Normal coordinates & normal modes Normal modes of vibration for given spring mass system Angular frequencies of oscillation of two identical simple pendulum joined together | | Week 15 | Angular frequencies of oscillation of two identical simple pendulum joined together Unit test 3 | | Week 16 | Discussion & revisionUnit test 4 |