LESSON PLAN

1ST SEMESTER SESSION (2025-26)

	SESSION (2025-26)
NAME OF THE LECTURER:	Pooja Kumari
CLASS AND SECTION:	B.Sc. 1 ST Sem.
SUBJECT:	MECHANICS
	ASSIGNMENTS
Week 1	 Orientation Fundamentals of Dynamics: Rigid body, moment of inertia Radius of Gyration Theorems of perpendicular and parallel axis Moment of inertia of rod
Week 2	Moment of inertia of ring, disc, angular disc, solid cylinder, solid sphere, hollow sphere
Week 3	 Moment of inertia of rectangular plate, square plate, solid cone Torque, rotational K.E, angular momentum, law of conservation of angular momentum
Week 4	 Rolling motion, condition of pure rolling, acceleration of body rolling down an inclined plane Fly wheel, moment of inertia of an irregular body Elasticity: deforming force
Week 5	 Elastic limit stress and strain stress and strain & their types Hooks law Module of elasticity, Relation between shear angle and angle of twist, elastic energy stored in an elastic body
Week 6	 Elongation produced in heavy rod due to its own weight, tension in rotating rod Poison's ratio & its limiting values, elastic constants and their relations Torque required for twisting cylinder
Week 7	 Bending of beam, bending moment and its magnitude Flexural rigidity, geometrical moment of inertia for beam of rectangular cross section Bending of cantilever

Week 8	 Weight of cantilever uniformly distributed over its length Dispersion of a centrally loaded beam supported at its ends. Determination of elastic constants for material of wire by Searle's method
Week 9	 Special theory of relativity: Michelson's Morley experiments and its outcomes Postulates of special theory of relativity
Week 10	 Lorentz transformations Lorentz contraction Time dilation Relativistic transformation of velocity
Week 11	 Relativistic addition of velocity Variation of mass energy equivalence Relativistic doppler effect, kinematics
Week 12	 Transformation of energy and momentum Transformation of force, problems of relativistic dynamics Gravitation and central force motion Law of gravitation
Week 13	 Potential and field due to spherical shell Potential and field due to solid sphere Motion of a particle under central force field Two body problem and its reduction to one body problem and its solution
Week 14	 Compound pendulum or physical pendulum in form of elliptical lamina and expression of time period Determination of g by bar pendulum Normal coordinates & normal modes Normal modes of vibration for given spring mass system
Week 15	Angular frequencies of oscillation of two identical simple pendulum joined together
Week 16	Discussion & revisionUnit test

LESSON PLAN

1ST SEMESTER SESSION (2025-26)

NAME OF THE LECTURER:	Pooja Kumari
CLASS AND SECTION:	B.Sc. Medical 1 ST (Minor)
SUBJECT:	ELEMENTARY MECHANICS
	ASSIGNMENTS
Week 1	 Orientation Fundamentals of Dynamics: Rigid body, moment of inertia Radius of Gyration
Week 2	 Theorems of perpendicular and parallel axis Moment of inertia of ring, disc
Week 3	 Moment of inertia of angular disc Moment of inertia of solid cylinder Unit test 1
Week 4	 Elasticity: deforming force Elastic limit stress and strain
Week 5	 stress and strain & their types Hooks law Module of elasticity
Week 6	 Relation between shear angle and angle of twist Poison's ratio & its limiting values
Week 7	 Torque required for twisting cylinder Unit test 2
Week 8	Special theory of relativity: Michelson's Morley experiments and its outcomes

Week 9	 Postulates of special theory of relativity Lorentz transformations
Week 10	 Lorentz contraction Time dilation Relativistic transformation of velocity
Week 11	 Relativistic addition of velocity Variation of mass energy equivalence Discussion
Week 12	 Gravitation and central force motion Law of gravitation Potential and field due to spherical shell
Week 13	 Potential and field due to solid sphere Motion of a particle under central force field
Week 14	 Normal coordinates & normal modes Normal modes of vibration for given spring mass system Angular frequencies of oscillation of two identical simple pendulum joined together
Week 15	 Angular frequencies of oscillation of two identical simple pendulum joined together Unit test 3
Week 16	Discussion & revisionUnit test 4